Stochastic Algorithm For Parameter Estimation For Dense Deformable Template Mixture Model
نویسندگان
چکیده
Estimating probabilistic deformable template models is a new approach in the fields of computer vision and probabilistic atlases in computational anatomy. A first coherent statistical framework modelling the variability as a hidden random variable has been given by Allassonnière, Amit and Trouvé in [1] in simple and mixture of deformable template models. A consistent stochastic algorithm has been introduced in [2] to face the problem encountered in [1] for the convergence of the estimation algorithm for the one component model in the presence of noise. We propose here to go on in this direction of using some “SAEM-like” algorithm to approximate the MAP estimator in the general Bayesian setting of mixture of deformable template model. We also prove the convergence of this algorithm toward a critical point of the penalised likelihood of the observations and illustrate this with handwritten digit images.
منابع مشابه
Toward a Coherent Statistical Framework for Dense Deformable Template Estimation
The problem of estimating probabilistic deformable template models in the field of computer vision or of probabilistic atlases in the field of computational anatomy has not yet received a coherent statistical formulation and remains a challenge. In this paper, we provide a careful definition and analysis of a well defined statistical model based on dense deformable templates for gray level imag...
متن کاملConvergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation
Estimation in the deformable template model is a big challenge in image analysis. The issue is to estimate an atlas of a population. This atlas contains a template and the corresponding geometrical variability of the observed shapes. The goal is to propose an accurate algorithm with low computational cost and with theoretical guaranties of relevance. This becomes very demanding when dealing wit...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملModel-Based Regularisation for Respiratory Motion Estimation with Sparse Features in Image-Guided Interventions
Intra-interventional respiratory motion estimation has become vital for image-guided interventions, especially radiation therapy. While real-time tracking of highly discriminative landmarks like tumours and markers is possible with classic approaches (e.g. template matching), their robustness decreases when used with non-ionising imaging (4D MRI or US). Furthermore, they ignore the motion of ne...
متن کاملHigh-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm
We propose a generic stochastic expectationmaximization (EM) algorithm for the estimation of high-dimensional latent variable models. At the core of our algorithm is a novel semi-stochastic variance-reduced gradient designed for the Qfunction in the EM algorithm. Under a mild condition on the initialization, our algorithm is guaranteed to attain a linear convergence rate to the unknown paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009